ATX3 TRANSCEIVER FOR DOGE AS1

The ATX3 transceiver is able to control up to **8 wireless sirens** and to **receive** and **manage** all information coming from the memorized sirens.

The transmitting section consists of two control inputs for the **alarm**, two inputs for **on/off** system status signaling, and a button (**P1**) that transmits continuously (if pressed) the code to be **memorized** on the sirens and which can be used also to modify this code, by keeping it pressed during the first power supply.

The receiving section consists of a 7 segment display, 4 signalling LED, 2 open collector outputs, 1 relay output (NC) and the P2 button.

The display will show, from 1 to 8, which siren has indicated the problem.

The **3 surface mounted LEDs** allow to view the type of anomaly detected on the sirens: **tamper**, **no supervision** and **low battery level**.

The red led which protrudes from the housing collects **all** these signals.

The tamper led is reset **upon activation** of the main station while the other two leds are reset when battery power or radio transmission is **restored**.

If anomaly is detected on more than one siren, the display starts to cycle, **displaying** for **2 seconds** the number of siren, while the **3 leds** show the type of anomaly noticed.

Button **P2** is used to access programming, memorize siren codes and exit programming. The sequence is the following:

See the doge AS1 manual to learn about ATX3 programming.

Descrition of inputs

ON/OFF inputs (terminals n.3 and n.4)

Terminal n.3 Input to be connected to the **ON/OFF** output of the alarm main station.

When it turns to LOW level (GND), after about 1 second there is a system ON

transmission, with a duration of 2 seconds.

The display indicates this condition with the letter "A" on steady.

When it returns to HIGH level after about 1 second, there is a system OFF

transmission with a duration of 2 seconds.

Terminal n.4 Input to be connected to the **ON/OFF** output of the alarm main station.

When it turns to HIGH level (12 Vdc) after about 1 second, there is a system ON

transmission with a duration of 2 seconds.

The display indicates this condition with the letter "A" on steady.

When it returns to LOW level after about 1 second, there is a system OFF

transmission with a duration of 2 seconds.

ALARM inputs (terminal n.5 and n.6)

Terminal n.5 Input to be connected to the alarm output of the main station.

When it turns to LOW level (GND) after about 1 second, an alarm transmission is

sent to the sirens, with a duration of 2 seconds.

When it returns to HIGH level, after about 1 seconds, there is a transmission of 2

seconds which silences all the wireless sirens.

Terminal n.6 Input to be connected to the alarm output of the main station.

When it turns to HIGH level (12 Vdc) after about 1 second, an alarm transmission

is sent to the sirens, with a duration of 2 seconds.

When it returns to LOW level, after about 1 seconds, there is a transmission of 2

seconds which silences all the wireless sirens.

Descrition of output

Tamper Output (Terminal n.7 and n.8)

This relay output (with contact normally closed) **collectos** all tamper indications from the memorized sirens.

When a tamper transmission arrives from **one** of the sirens, this output opens for **2 seconds**.

The **display** and the **tamper LED** memorize and display the event.

The condition persists until the **next activation** of the main station or until the **siren** that caused it is **delected** from memory.

Supervision Output (terminal n.9)

This open collector output **collects** all lack of supervision signals from all memorized sirens.

If no supervision signal is received from the memorized sirens in **3 hours**, there is a negative output on terminal n.9.

The **display** and the **spv** LED display and memorize the event.

This condition persists until the **resolution of the problem** generated it, or until the **siren** that caused it is **deleted** from memory.

LOW BATTERY output (terminal n. 10)

This open collector output **collects** all discharged battery signals from the memorized sirens. When an exhausted battery transmission arrives from one of the memorized sirens, there is a negative output on terminal n. 10.

The **display** and the **low battery LED** display and memorize the event.

This condition persists until the discharged batteries of the siren are replaced or until the **siren** that caused it is **deleted** from memory.

Description of buttons

Button P1

This button allow to constantly transmit a radio signal to be memorized on the outdoor sirens. In this phase, the display shows the letter "t" flashing.

During programming it is used to **delete** a siren code. During power-on (first start-up) it generates a **new 16-bit code**.

In this phase it displays horizontal dashes in continuous rotation.

Button P2

This allows to access programming, select the 8 zones to be memorized and to exit programming.

Description of the terminal board

Terminal **n. 1** Positive power supply **13.6 Vdc**

Terminal **n. 2** Negative power supply **GND**

Terminal **n. 3 ON/OFF** input for **negative** signals

Terminal n. 4 **ON/OFF** input for **positive** signals Terninal **n**. **5 ALARM** input for **negative** signals

Terminal n.6 **ALARM** input for **positive** signals

Terminal n.7 and 8 TAMPER output (relay NC 100mA

Terminal n.9 SUPERVISION output max 30 mA

Terminal n. 10 **DISCHARGED BATTERY** output max 30 mA

Terminal n. 11 **GND**

Termnal n. 12 Output for antennal

Description of Jumper JP3

Jumper JP3 is used to exclude display of lack of supervision by the led that protrudes from the housing.

JP3 ON (closed) = Display enabled JP3 OFF (open) = Display excluded

Technical Features

Nominal operating voltage = 12 Vdc Min. absorption = 20 mAMax absorption = 70mA

Transmission frequency
Receiving frequency
Operating temperature

7.31.72

433.92 Mhz with ASK modulation (10mW)

= 433.92 Mhz with ASK superheterodyne receiving temperature

= + 5°c to + 40°C = 433.92 Mhz with ASK superheterodyne receiver